

Instrumentos de Medição e Controle

MANUAL DE INSTRUÇÕES

VKC-611 Indicador de Processo

Rua Theolinda Xavier da Silveira, 255 Jd. Oliveira - Itu/SP CEP: 13.312-035 (55) 11 | 4023.5782 www.velki.com.br

contato@velki.com.br

VENDAS

(55) 11 | 4018.3070 vendas@velki.com.br

SUPORTE

(55) 11 | 4018.3070 suporte@velki.com.br

Item Página 01. Introdução 03 03 02. Características 03 CARACTERISTICAS GERAIS 03. Itens inclusos na embalagem 04. Especificações 04 4.1 Sinais de entrada 04 4.2 Conversão A/D 04 4.3 Saídas 04 CARACTERISTICAS DE **OPERAÇÃO** 4-4 Isolação Dielétrica 05 4-5 Generalidades 06 4-6 Codificação 07 05. Instalação 80 5.1 Mecânica 80 5.2 Elétrica 09 **FUNÇÕES** 5.2.1 Ligação da Entrada 11 5.2.2 Ligação das Saídas 12 06. Painel de Operação 12 07. Parametrização 13 7.1 Operação 13 7.2 Configuração 13 7.3 Linearização Especial 17 7.4 Calibração 18 08. Operação dos Alarmes 19 09. Funções Analíticas para Leitura 19 INDICAÇÃO DE FALHAS 10. Linearização de Sinais 10.1 Metodo Especial 11. Indicação de Falhas 12. Garantia

01.INTRODUÇÃO

O Indicador de Processo VKC-611 foi projetado com tecnologia de ponta para serem versateis, robustos e de facil uso.

A leitura do processo e feita atraves de uma entrada parametrizável para sensores de temperatura e sinais de instrumentação.

As saídas de atuação para o processo sao parametrizáveis nas funções alarme e retransmissão. A interface de navegação é simples e intuitiva, composta por quatro teclas frontais e display LED de dígitos grandes com alto brilho.

02.CARACTERÍSTICAS

- Alimentação universal CA e CC.
- Dois contatos a relé
- Entrada de sinal isolada e configurável para termopares, termorresistências, sinais mV,
 V e mA. 20 leituras por segundo
- Ajuste de casa decimal e indicação de unidades de engenharia no display: °C, °F, k,
 bAr, RSI, PA, mcA, mmHG, AtM, GAL, L, MM, cM, M, V, Vcc, VAc, A, Acc, AcA, OhMS, J,
 kGF, kG, G, Ton
- Saída de retransmissão isolada de 14 bits para leitura
- · Linearização especial de sinais de instrumentação com até 21 pontos configuráveis
- Linearização quadrática de sinais de instrumentação para medição de vazão
- Função analíticas para leitura: mínimo, máximo, média, hold, relativa
- Fonte para alimentação de transmissores de sinais
- Caixa plástica UL94-V0 com 73mm de profundidade

03. ITENS INCLUSOS NA EMBALAGEM

- 1 indicador
- 1 protetor de bornes
- 2 presilhas de fixação
- 1 manual de instruções

04. ESPECIFICAÇÕES 4.1 - SINAIS DE ENTRADA

Tabela 1 Sinal	Tipo Entrada	Escala	Casas Decimais	Exatidão @25°C	Impedância
Tensão	0a60mV,)a1V,0a5V, 1a5V, 0a10V, ±60mV, ±1V, ±5V,±10V	-1999 a 9999	0 a 3	0,1% F.E	> 1,5MΩ
Corrente	0 a 20mA ou 4 a 20mA				25Ω + 0,7V
	PT100	-200 a 850°C		0 1% FF	> 10MΩ
TR	PT1000	-200 a 850°C	0 ou 1	0,1% F.E	
	Ni120	-79 a 205°C		0,2% F.E	
	N	-50 a 1300°C			> 1,5MΩ
	Т	-200 a 400°C			
	E	-100 a 720°C	0 ou 1	0,1% Fundo de Escala + Junta Fria (± 2°C)	
	K	-100 a 1300°C			
TC	J	-50 a 1100°C			
	R	-0 a 1760°C			
	S	-0 a 1760°C	0		
	В	-0 a 1800°C (abaixo 40°C: Indica 40°C)			

4.2 CONVERSÃO AD

Resolução	16 bits
Amostragem Vinte por segundo (50ms)	
Estabilidade Térmica	50ppm

4.3 SAÍDAS

LINEAR

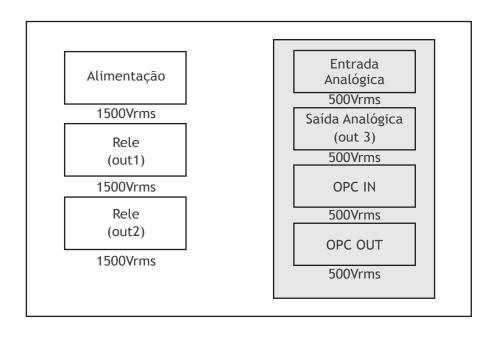
Quantidade	Uma (OUT3 - configurável para linear ou pulso)	
Escala 0 a 20mA, 4 a 20mA, 20 a 4mA, 20 a 0mA		
Impedância	≤ 600Ω	
Função	Retransmissão	
Resolução	14 bits	

4.3 SAÍDAS

LINEAR

Exatidão	0,15% do fundo de escala @ 25°C
Atualização	Vinte por segundo (50ms)

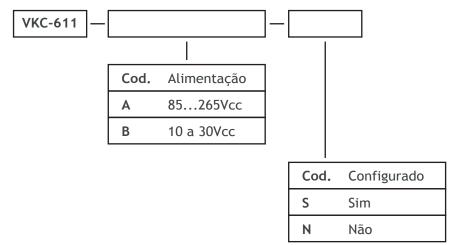
PULSO


Quantidade Uma OUT3 (configurável para linear ou pulso)		
Nivel Logico	0 a 20Vcc - 25mA (máximo)	
Função Alarme	Função Alarme	
Atualização	Atualização Vinte por segundo (50ms)	

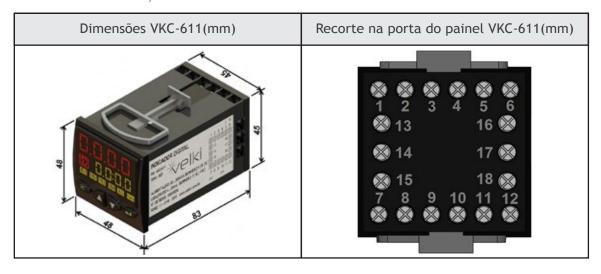
RELÉ

Quantidade	Duas (OUT1, OUT2)	
Tipo	Relé SPST - N.A, 250Vca/3A	
Função	Alarme	
Atualização	Vinte por segundo (50ms)	

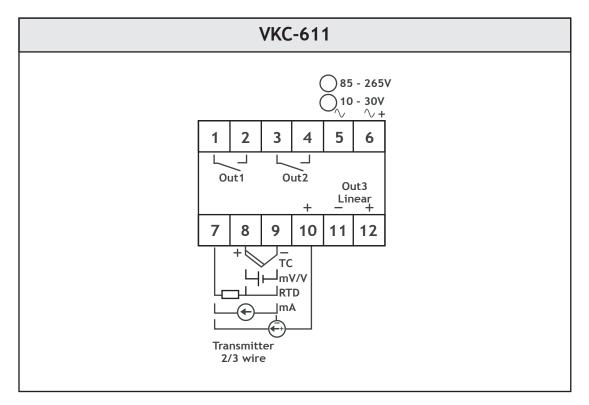
4.4 ISOLAÇÃO DIELÉTRICA


DIAGRAMA SIMPLIFICADO COM AS ISOLAÇÕES DIELÉTRICAS ENTRE AS INTERFACES DO INDICADOR.

4.5 GENERALIDADES


Alimentação Universal	85 a 265Vca - 47 a 63Hz ou 85 a 265Vcc	
	10 a 30Vcc (especificar no pedido)	
Consumo	3VA	
Temperatura de armazenagem	-25°C a 70°C	
Temperatura de operação	-10°C a 55°C	
Umidade relativa de operação	5 a 95% sem condensação	
Altitude máxima de operação	zão 2000m	
Material do teclado	Silicone com acabamento em EPOX UL94-VO	
Material da caixa	Policarbonato UL94-VO	
Grau de Proteção	IP65 no frontal	
Normas de calibração	ASTM	
Peso Aproximado VKC-611	125g	

4.6 CODIFICAÇÃO


5. INSTALAÇÃO5.1 MECÂNICA

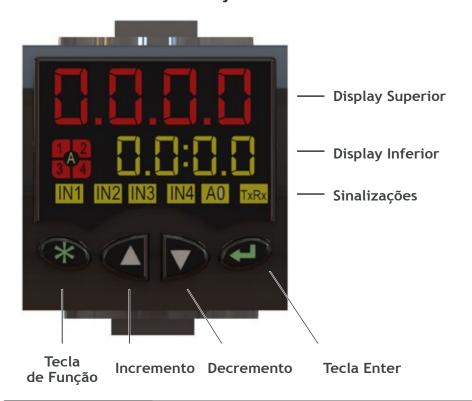
PARA INSTALAR O INDICADOR EM PORTA DE PAINEL OU QUADRO ELÉTRICO, OBSERVAR AS DIMENSÕES DA FIGURA. PARA FIXAÇÃO DO INDICADOR UTILIZAR AS PRESILHAS DE FIXAÇÃO.

5.2 ELÉTRICA

PARA REALIZAR AS CONEXÕES ELÉTRICAS, PARAFUSAR CONDUTORES ATÉ 2,5mm2 NOS CONTATOS TRASEIROS DO INDICADOR. PREFERENCIALMENTE UTILIZAR CONDUTORES COM TERMINAIS.

- Para proteção elétrica dos contatos e segurança no manuseio, utilizar o protetor de bornes na traseira do indicador.
- Canalizar os condutores dos sinais em eletrodutos aterrados, separados dos condutores de alimentação e potência.
- Energizar o indicador através de rede própria para instrumentação, isenta de flutuações de tensão e interferências.
- Para minimizar a susceptibilidade eletromagnética do indicador, utilizar filtros RC em paralelo às bobinas de contatores e solenoides.
- Para ligar um termopar ao indicador, utilizar cabo de compensação compatível, observando a polaridade.
- Para ligar um PT100 ou PT1000 ao indicador, utilizar condutores de cobre com resistência de linha simétrica e menor que 150, preferencialmente trançados com cordoalha aterrada no ponto de origem do sinal.
- Para ligar um Ni120 ao indicador, utilizar condutores de cobre com resistência de linha simétrica e menor que 50, preferencialmente trançados com cordoalha aterrada no ponto de origem do sinal
- Para ligar um sinal de tensão ou corrente ao indicador, utilizar condutores de cobre preferencialmente trançados com cordoalha aterrada no ponto de origem do sinal.

Os indicador VKC-611 está em conformidade com as normas que regularizam os equipamentos intrinsecamente seguros, assim, para instalação em áreas classificada, garantir confinamento dos indicadores em encapsulamento robusto contra explosão.


5.2.1 LIGAÇÃO DE ENTRADA

Sinal de Entrada	VKC-611
PT100, PT 1000 ou Ni120	7 8 9 L RTD
Termopar ou Tensão	8 9 8 9 + J- _{TC} + L L - _{mV/V}
Corrente	7 8 9 +
Transmissor de corrente a dois fios	7 8 9 10
Transmissor de corrente a três fios	7 8 9 10
Transmissor de tensão a três fios	8 9 10

5.2.2 LIGAÇÃO DAS SAÍDAS

Tipo de Saída	VKC-611	
Alarme	Fase OUT2 OUT1 3 1 4 2 Neutro	
Saída mA para retransmissão	OUT3 12 + Equipamento com entrada mA	

6 PAINEL DE OPERAÇÃO

Display superior	Na tela principal e no bloco de operação, indica a leitura PV. Nos blocos ConF, L.ESP e CAL, indica o nome dos parâmetros.
Display inferior	Na tela principal, indica a unidade de engenharia. Nos blocos de operação, ConF, L.ESP e CAL, indica o valor dos parâmetros. Quando o indicador estiver executando função e na tela principal, indica por quatro segundos a unidade de engenharia e por um segundo a função ativa.

7 PARAMETRIZAÇÃO

O INDICADOR POSSUI TELA PRINCIPAL E QUATRO BLOCOS DE PARÂMETROS:

Tela Principal	Visualização da leitura PV e unidade de engenharia,	
	e as mensagens de execução de funções.	
Operação	Ajuste dos parâmetros de uso rotineiro.	
Configuração	Ajuste das características operacionais do indicador	
Linearização Especial	Ajuste da curva de linearização especial	
Calibração	Ajuste da leitura de entrada e sinais lineares de saída,	
	além de entradas e saídas opcionais.	

Nas tabelas a seguir estão descritos todos os parâmetros do indicador, porém na navegação só serão visualizados aqueles com função ativa.

7.1 OPERAÇÃO

Para selecionar os parâmetros disponibilizados neste bloco pulsar a tecla "Enter"

Para ajustar o parâmetro selecionado, utilizar as teclas "Incremento" e "Decremento"

Operação	Descrição	Ajuste	Escala
Ax.SP	Set-point do alarme - A1, A2, A3 ou A4	in.L a in.H	u.e
Ax.A	Set-point A do alarme de banda	in.L a in.H	u.e
Ax.b	Set-point B do alarme de banda	in.L a in.H	u.e

OBS.:X é o alarme sendo configurado - A1, A2, A3 ou A4.

7.2 CONFIGURAÇÃO

Bloco disponibilizado para configuração de sinais de entrada, escalas, saídas, alarmes. opcionais e outras funções. Para acessar os parâmetros, pressionar a tecla "Enter" até o display indicar ConF.

▲ ▼ Selecionar os parâmetros.

Entrar no parâmetro.

▲ ▼ Ajustar seu conteúdo.

Retornar e salvar a alteração.

Para retornar a tela principal, manter pressionada a tecla 📲

ConF	Descrição		Ajuste	Escala	
in.ty	Sinal de entrac	la	Tabela 1		
unit	Unidade de ter	nperatura	C, E, K (°C, °F, K)		
u.E	Unidade de en	genharia	Tabela 6		Sinal
Ln.ty	Tipo de lineari	zação. Vide item 10	OFF, root, L.ESP		de Si
d.P	Posição do pon	to decimal	Tabela 1		
in.L	Limite inferior da leitura PV		Tabela 1	u.e	Entrada
in.H	Limite superior da leitura PV		Tabela 1	u.e	ם
Filt	Filtro do sinal de entrada		OFF, 0,1 a 50,0	seg	
OFSt	Deslocamento da leitura PV		-1000 a 1000	u.e	
out1	Saída a relé SPST - NA		OFF, A1, A2, tL.Fn, di, d2		
out2	Saída a relé SPST-NA		OFF, A1, A2, tL.Fn, d1, d2		
out3	Saída linear - pulso		OFF, A1, A2, PV, EL.Fn, d1, d2		
		out3 = A1, A2, tL.Fn.	Puls		
03.SG	Sinal de out3	d1,d2			
		out3=PV	20-0, 20-4,0-20, 4-20		

Ax.Fn	Função do alarme - A1, A2, A3, A4.	Tabela 2		
	Vide item 8.			
Ax.AC	Ação do alarme	no, nC		
		(contato aberto, fechado)		
Ax.SP	Set-point do alarme	in.L a in.H	u.e	
Ax.A	Set-point A do alarme de banda	in.L a in.H	u.e	Alarmes
Ax.B	Set-point B do alarme de banda	in.L a in.H	u.e	Alar
Ax.HY	Histerese do alarme	1 a 1000	u.e	
Ax.rt	Retardo na ativação do alarme	OFF, 1 a 9999	seg	
Ax.PL	Tempo de ação do alarme	OFF, 1 a 9999	seg	
Ax.bL	Bloqueio inicial do alarme	no, YES		
Ax.op	Acesso Ax.SP no bloco de operação	no, YES		
tL.Fn	Função da tecla *	Tabela 3		
Clini	Retorna parametrização de fábrica	no, YES		
	(cuidado!)			íões
VEr	Versão do firmware - somente leitura	A.BC		Funções
LOC	Bloqueio de alterações dos	Tabela 5		
	parâmetros			

OBS.:

- X é o alarme que está sendo configurado A1, A2, A3 ou A4.
- A versão de firmware do indicador poderá ser alterada sem aviso prévio.

Tabela 2	Funções dos alarmes	
Ax.Fn		
oFF	Desligado, sem função	
FAİL	Leitura fora da escala ou quebra do sensor	
Н		
L	Vide Operação dos Alarmes, Item 8	
bAnd		

Tabela 3	Funções da tecla de função	
tL.Fn		
oFF	Desligada, sem função	
AL.bL	Bloqueia os alarmes ativos até o próximo ciclo de alarme	
PEAk	Peak/Min/Hold Exibe valores da leitura PV de pico, mínimo e hold. 3 segundos:	
	habilita função, Pulso: alterna entre funções	
AvG	Exibe valor médio da leitura PV	
rEL	Exibe valor relativo ao PV do momento de acionamento da tecla	

OBS.:

- Para acionamento ou desacionamento da função selecionada para a tecla, segurá-la pressionada por 3 segundos.
- No bloco de operação, após confirmação de tecla acionada, o display inferior alterna a mensagem da função ativada e o respectivo valor, de acordo com a função escolhida para tecla.

Tabela 4	Funções das entradas digitais	
dx.Fn		
oFF	Desligada, sem funç	ão
AL.bL	Contato fechado Contato aberto	Alarmes bloqueados Alarmes desbloqueados
HoLd	Contato fechado Contato aberto	Congela leitura PV Mantém função desativada
PEaK	Contato fechado Contato aberto	Exibe valor de pico de PV Mantém função desativada
Min	Contato fechado Contato aberto	Exibe valor mínimo de PV Mantém função desativada
AvG	Contato fechado Contato aberto	Exibe valor médio de PV Mantém função desativada
rEL	Contato fechado Contato aberto	Exibe valor relativo de PV Mantém função desativada
t.rSt	Contato fechado Contato aberto	Mantém totalizador resetado Habilita totalizador

OBS.:no bloco de operação, após confirmação de entrada digital acionada, o display inferior alterna a mensagem da função ativada e o respectivo valor, de acordo com a função escolhida para cada uma das entradas digitais.

Tabela 5	Bloqueio de alteração dos parâmetros	
LoC		
oFF	Desligado, sem bloqueio	
CAL	Calibração bloqueada	
L.ESP	Linearização especial, CAL bloqueados	
ConF	Configuração, L.ESP, CAL bloqueados	
ALL	Todos os parâmetros bloqueados	

Tabela 6	Unidades de engenharia para entradas de instrumentação	
u.E		
°C, °F, K, bAr, PSi, PA, mcA, mmHG, atM, GAL, L, MM, cM, M, V, Vcc,		

VAc, A, Acc, AcA, ohMS, J, kGF, kG, G, Ton, entre outras.

7.3 LINEARIZAÇÃO ESPECIAL

Bloco disponibilizado para criação de curva dedicada à linearização de sensores com resposta não linear. Para acessar os parâmetros, selecionar sinal de instrumentação no parâmetro in.ty, selecionar a opção L.ESP no parâmetro Ln.ty, e, partindo da tela principal, pressionar a tecla \blacktriangleleft até o display indicar L.ESP.

▲ ▼ Selecionar os parâmetros.

Entrar no parâmetro.

▲ ▼ Ajustar seu conteúdo.

Retornar e salvar a alteração.

Para retornar a tela principal, manter pressionada a tecla

L.ESP	Descrição	Ajuste
n.Pt	Quantidade de pontos	2 a 21
in.XX	Sinal ou valor de entrada do ponto XX	rEt, CAL, Escala do
PV.XX	Leitura para o ponto XX	sensor de entrada
End	Final da edição da linearização	in.La in.H

OBS.:XX é o ponto da curva sendo configurada (incrementando automaticamente).

7.4 CALIBRAÇÃO

Bloco disponibilizado para ajuste da leitura PV e saídas lineares, entradas e saídas opcionais Para acessar os parâmetros, pressionar a tecla e até o display **4** indicar CAL.

▲ ▼ Selecionar os parâmetros.

Entrar no parâmetro.

▲ ▼ Ajustar seu conteúdo.

Retornar e salvar a alteração.

Para retornar a tela principal, manter pressionada a tecla

CAL Descrição Escala Ajuste C.in.L Pts. A/D -1999 a 4000 Ajuste de zero para leitura C.in.H -1999 a 4000 Pts. A/D Ajuste de span para leitura C.o3.L Ajuste de zero para saída linear out3 -1000 A 1000 Pts. D/A C.o3.H Ajuste de span para saída linear out3 -1000 A 1000 Pts. D/A C.04.L Ajuste de zero para saída linear out4 -1000 A 1000 Pts. D/A C.o4.H -1000 A 1000 Ajuste de span para saída linear out4 Pts. D/A

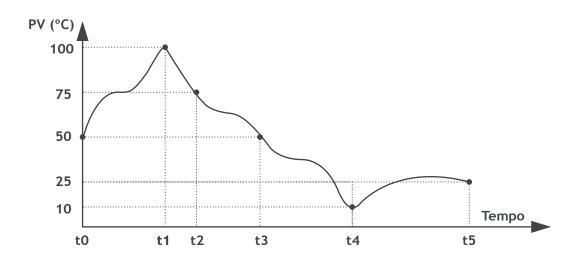
Procedimento de Calibração Entradas

- Selecionar o parâmetro a ser ajustado. O display superior indicará o valor de PV.
- Ajustar usando as teclas $\blacktriangle \blacktriangledown$ de forma a igualar o PV ao padrão.
- Confirmar a calibração pressionando
 Para retornar a calibração de fábrica, retornar o ajuste a zero

Saídas lineares (0/4 a 20 mA)

- Selecionar o parâmetro a ser ajustado.
- Medir o sinal de saída correspondente com miliamperímetro.
- Ajustar usando as teclas
- Confirmar a calibração pressionando
 Para retornar a calibração de fábrica, retornar o ajuste a zero.

8. OPERAÇÃO DOS ALARMES


Display	Modo de Operação	Representação Gráfica	Obs.
oFF	Alarme Desligado	ON OFF PV	
FaiL	Falha de sensor ou Falha de Saída	Alarme é acionado quando ocorre uma condição de falha de sensor ou falha de saída, conforme descrito no item 11.	
Н	Alarme Alta	ON AX.HY—AX.SP OFF	
L	Alarme Baixa	ON AX.SP AX.HY OFF	
bAnd	Alarme de Banda	ON AX.A, AX.HY AX.B, AX.HY OFF ON AX.B, AX.HY ON AX.B, AX.HY ON AX.B, AX.HY OFF	Para A > B Para A < B

9. FUNÇÕES ANALÍTICAS PARA LEITURA

Funções disponibilizadas para acompanhamento do comportamento da leitura do processo PV ao longo do tempo: pico, vale, média, leitura relativa.

Os parâmetros tL.Fn, d1.Fn e d2.Fn permitem configurar o modo de ativação das funções analíticas. Na tela principal, o display superior indica a leitura PV atual, e o display inferior indica o valor da função ativada.

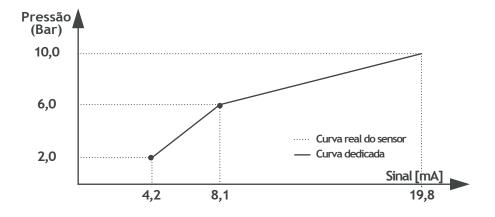
Exemplo de aplicação

Função	Descrição	
oFF	Desligada, sem função	
Hold	Congela Leitura. Considerando a ativação da função no momento to, é indicado no	
	displat inferior 50°C durante todo o período.	
PEAk	Valor de pico. Considerando a ativação da função no momento to, é indicada no display	
	inferior a leitura PV até o momento t1, a partir deste momento, é indicado o valor de pico, 100°C	
Min	Valor mínimo. Considerando a ativação da função no momento to, é indicado no	
	display inferior 50°C até o momento t3. De t3 até t4 é indicada a leitura PV, a partir	
	deste momento, é indicado o valor mínimo, 10°C	
AvG	Valor médio. O display inferior indica o valor médio das últimas 200 leituras PV	
rEL	Valor relativo. Considerando a ativação da função no momento to, a leitura PV, neste	
	momento, é tomada como referência (50°C), e o display inferior indica a diferença:	
	50°C, 25°C, 0°C, -40°C, -25°C, em t1, t2, 13, 14, t5, respectivamente	

10. LINEARIZAÇÃO DE SINAIS

Função disponibilizada para criação de curva dedicada a linearização de sensores com resposta não linear. Sao disponibilizadas dois métodos de linearização: quadrático e trechos de reta.

10.1 MÉTODO ESPECIAL


Aplicável a sensores com resposta específica e não padronizada. Para seleção deste método, vide item 7.3.

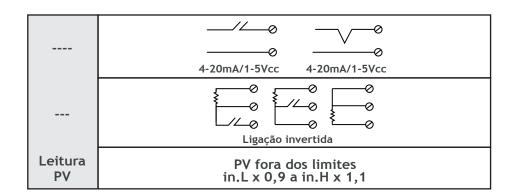
Os valores de entrada são configurados nos parâmetros in.XX, sendo possível excursionar o ajuste em toda a escala do sensor, ou ainda injetar o sinal do sensor na entrada do indicador, confirmando a configuração na opção CAL.

Os valores de leitura são configurados nos parâmetros PV.XX, sendo possível excursionar o ajuste entre in.L e in.H.

Exemplo de aplicação

Curva característica de um sensor de pressão com saída mA levantada empiricamente utilizando-se três pontos de medição.

Configuração da linearização especial no controlador


Parâmetro	Ajuste
in.tY	4-20
d.P	0,0
Ln.tY	L.ESP
n.Pt	3
in.01	4,20
PV.01	2,0
in.02	8,10
PV.02	6,0
in.03	19,80
PV.03	10,0

OBS.: maior a quantidade de pontos inseridos, melhor a exatidão da leitura.

11.INDICAÇÕES DE FALHAS

Falhas de ligação dos sensores na entrada e falhas de configuração.

Display	Falha
uuuu	TC RTD
nnnn	RTD RTD

12.GARANTIA

O fabricante garante que os indicadores relacionados na Nota Fiscal de venda estão isentos de defeitos e cobertos por garantia de 12 meses a contar da data de emissão da referida Nota Fiscal.

Ocorrendo defeito dentro do prazo da garantia, os indicadores devem ser enviados a nossa fábrica, acompanhados de NF de remessa para conserto, onde serão reparados ou substituídos sem ônus desde que comprovado o uso de acordo com as especificações técnicas contidas neste manual.

O que a garantia não cobre

Despesas indiretas como fretes, viagens e estadias.

O fabricante não assume nenhuma responsabilidade por qualquer tipo de perda, dano, acidente, ou lucro cessante decorrentes de falha ou defeito no indicador, tão somente se comprometendo a consertar ou repor os componentes defeituosos quando comprovado o uso dentro das especificações técnicas.

Perda da garantia

A perda de garantia se processará caso haja algum defeito no indicador e seja constatado que tal fato ocorreu devido à instalação elétrica inadequada e/ou o indicador ter sido utilizado em ambiente agressivo, ter sido modificado sem autorização, ter sofrido violação ou ter sido utilizado fora das especificações técnicas.

O fabricante não possui representantes ou autorizados a efetuar serviços de assistência técnica e manutenção. Estes serviços DEVEM ser tratados única e exclusivamente com o fabricante.

O fabricante reserva-se no direito de modificar qualquer informação contida neste manual sem aviso prévio.